

How to Navigate Operational Technology (OT) Cybersecurity in Port Environments

AAPA WEBINAR

June 15, 2021

Introduction

Scott Dickerson

- Executive Director of MTS-ISAC
- 20+ years Intel, Info Sharing, Cybersecurity
- USCG Cyber Command, Navy Cyber Defense Operations Command, Private Sector Maritime Stakeholders

Peter Lund

- VP of Product Management at Industrial Defender
- 15+ years of experience in IT and OT security
- Worked at KVH Industries

Agenda

- The Maritime Cyber Threat Landscape
- Potential Impacts of a Cyber Attack
- Information Technology vs. Operational Technology
- Emerging Cybersecurity Compliance Standards for Ports
- OT Cybersecurity Best Practices
- Recommendations & Key Takeaways

The Maritime Cyber Threat Landscape

Actors

- State level
- Criminal
- Insiders
- Activists

Motivations

- Political / Strategic
- Financial / Smuggling
- Revenge / Unintentional
- Ideologocial

Objectives

- Data, Information
- Funding source
- Smuggling
- Disrupt / Destroy
- Media / Attention

Potential Impacts of a Cyber Attack Against Maritime OT

Organizational

- Can place significant strain on multiple teams involved in operations, IT, customer service, etc. - this is an organizational challenge
- Financial and/or reputational impacts

Supply Chain

- Impacts to both upstream and downstream maritime stakeholders
- Intermodal disruptions as well as impacts to other critical infrastructure

Safety & Security

- Environmental / hazardous material incidents
- Availability and integrity of cranes, pumps, etc.
- Access controls gates, CCTV, etc.

IT vs. OT Security: What's the Difference?

- The goal of information technology (IT) security is to protect the confidentiality of data flowing between connected devices. IT devices include:
 - Employee workstations
 - Tablets

- Telecommunications equipment
- Servers in a data center

The goal of operational technology (OT) security is to ensure the availability and integrity of systems that control physical processes. OT devices includes things like:

Power systems

- Cranes
 Building devices
- Programmable logic controllers

Because OT systems are different from traditional IT computing systems, you need to approach cybersecurity differently, too.

- More sensitive to intrusive security methods, like scanning
- Insecure by design- most devices have built-in remote access for vendors and third parties to perform maintenance
- Operate in real-time and can have physical consequences

Emerging Cybersecurity Compliance Standards

NVIC 01-20

ENISA

Colonial Pipeline incident impacts-new regs will likely affect ports

OT Cybersecurity Best Practices

- It all starts with knowing everything about your devices, including:
 - Where they are
 - What's on them
 - What they talk to
 - Who can access them
 - What their vulnerabilities are
 - What a healthy baseline looks like

How Do I Collect OT Asset Information?

ACTIVE

Agents

Pros:

- The most comprehensive data collection – identify anything
- Easy to manage centrally
- No credentials required

Cons:

 Requires installation and resources on the endpoint

Agentless/Native Querying

Pros:

- Second most comprehensive data collection method
- Leverages the same collection methods created by the device vendor
- Can be done from a centralized data collector

Cons:

 Requires routable connections to device and credentials

How Do I Collect OT Asset Information?

PASSIVE

Offline Collection

Pros:

- Serial/air-gapped assets with no other way to get
- If config file processed, still more accurate than spreadsheets

Cons:

- Only as good as last copy of config from device
- Manual work, but can be part normal routine if planned correctly

Network Monitoring

Pros:

- Quick to deploy if the infrastructure supports it
- Quickly find unknown IP based assets
- Threat Intel

Cons:

- Limited ability to collect data
- May require multiple sensors and SPAN/TAP/Mirror Ports in the target networks
- Not comprehensive enough for a compliance program or vulnerability management

What Else Is Important?

Vulnerability identification and management

Threat detection capabilities

Visibility and monitoring of 3rd party maintenance actions

Built-in compliance reporting for your standard

Integration with existing cybersecurity infrastructure (SIEM, etc.)

Recommendations & Key Takeaways

Organizations should seek to manage risk across people, process and technology

- Appoint a named cybersecurity leader
- Align security strategy with business roadmap to promote safe, secure and resilient operations

Cyber hygiene controls are first step to reducing risk

 After that, detection of anomalous activity, threat hunting, and information sharing reduce ability for adversaries to "live" in networks and decrease risk of catastrophic cyberattacks

+

Third party / vendor risk management needs to improve

- Software inventory should include Software Bill of Materials (SBOM)
- Monitor third-party maintenance activity
- Information sharing can improve detection and response

Questions?